Scientific, Distributed, Cloud Computing
Science Meets Computing

Using computation to support scientific research and exploration.
Third and Fourth Paradigms

Science Paradigms

- Thousand years ago: science was **empirical** describing natural phenomena
- Last few hundred years: the **theoretical** branch using models, generalizations
- Last few decades: a **computational** branch simulating complex phenomena
- Today: **data exploration** (eScience) unify theory, experiment, and simulation
 - Data captured by instruments or generated by simulator
 - Processed by software
 - Information/knowledge stored in computer
 - Scientist analyzes database/files using data management and statistics

\[
\left(\frac{\dot{a}}{a} \right)^2 = \frac{4\pi G \rho}{3} - K \frac{c^2}{a^2}
\]
Example: Genome Assembly

Reads provided to algorithm → Overlaps identified

Hamiltonian Path identified

Consensus sequence

Reads connected by overlaps
Example: Molecular Dynamics

\[+ 2 \text{e}^- + \text{H}^+ \rightarrow \]
Example: Particle Simulation
Example: LIDAR
Science Needs Computing

Computation not only expedites scientific research, but also makes certain scientific inquiries possible!
Distributed Computing
Oxen vs Chickens

If you are plowing a field, which would you rather use?

Two strong Oxen or 1024 Chickens?
Distributed Computing

Applications can increase **throughput** by executing multiple tasks simultaneously on **different machines**.
Abstractions: Common Patterns

Structured way of combining small executables into parallel graphs that can be scaled up to large sizes.

Examples
All-Pairs, Wavefront, Map-Reduce

Advantages
- Simple programming interface
- Hides details of distributed system

Disadvantages
- Only addresses one type of computation
- Difficult to implement large sophisticated applications
Biometrics Experiment: Overview

1. **Query**: Select and extract data from scientific repository
2. **Transcode**: Convert image data to new format suitable for analysis
3. **Comparison**: Perform All-Pairs computation on intermediate image data
Workflows: Graphs

Organize computation as a directed-acyclic graph (DAG)

Examples
Pegasus, DAGMan, Dryad, Makeflow

Advantages
● Exploit natural concurrency
● Program large applications
● Embed/implement abstracts in DAG

Disadvantages
● Tedious, difficult to construct DAGs
● Too low level
Biometrics Experiment: DAG

Large workflows require many nodes!
Weaver: Workflow Compiler

Simplified Distributed Programming!
Weaver: Features

Weaver is a high-level compiler framework that allows users to construct distributed workflows

- Built on top of Python programming language
- Enable users to combine abstractions to construct workflows
- Applies various compiler techniques to workflow construction
- Includes additional utilities such as linkers and profilers to provide complete programming toolchain
Biometrics Experiment: Weaver

1 db = MySQLDataset(‘db’, ‘biometrics’, ‘irises’)
2 irises = Query(db, db.c.state == ‘Enrolled’,
 Or(db.c.color == ‘Blue’,
 db.c.color == ‘Green’))

6 convert = ParseFunction(
 ‘convert_iris_to_template {IN} {OUT}’)
7 compare = ParseFunction(
 ‘compare_iris_templates {IN} > {OUT}’)

11 bits = Map(convert, irises, ‘{BASE_WOEXT}.bit’)
12 results = AllPairs(compare, bits, bits)
13 table = Merge(results, ‘table.txt’)
Transcoding Workflow
Weaver: Contribution

DAGs are the *assembly language* of distributed computing:

Provide mechanism for construction and executing large distributed applications

Abstractions are the *SIMD* instructions:

Provide powerful and compact way to express a common pattern of computation

*We need a *compiler* that allows us to take advantage of both in building large *distributed applications*!*
Cloud Computing
Cloud Computing

Cloud Computing as Gartner Sees It

- **SaaS**
 - Google Apps, Salesforce.com, NetSuite, Lotus, WebFilings, Zoho, Yahoo!Mail, Hotmail, ...

- **PaaS**
 - Google App Engine, Force.com, Windows Azure, LongJump, Rollbase, Amazon Elastic Beanstalk, VMware CloudFoundry, ...

- **IaaS**
 - Amazon EC2, Rackspace, VMware, Joyent, **Google Cloud Storage**,

Source: Gartner AADI Summit Dec. 2009
Renting (aka Out-sourcing)

Renting resources and services (including a data center or compute cluster!)

- **Scalability:**
 Ability to add more resources in order to increase performance

- **Elasticity:**
 Ability to add and remove resources on-demand

Made possible due to virtualization
Rent-a-Supercomputer
Hybrid Computing
Closing
Computer Scientist == Toolsmith

“If the computer scientist is a toolsmith, and if our delight is to fashion power tools and amplifiers for minds, we must partner with those who will use our tools, those whose intelligences we hope to amplify.”

- Fred Brooks
Enlist Now!

- Undergraduate Research
 - Independent Study
 - Funded Research
 - Just for kicks!

SCIENCE NEEDS YOU
Questions?

Peter Bui

Office: Phillips 131
EMail: buipj@uwec.edu
WWW: http://cs.uwec.edu/~buipj
IRC: pnutzh4x0r