Using **HTCondor** for Teaching and Research at UW-Eau Claire

Peter Bui
University of Wisconsin - Eau Claire

Liberal arts primarily undergraduate institution

UW System Center of Excellence for Faculty and Undergraduate Student Research Collaboration
HTCondor Infrastructure

DPL Cluster
- 36 Cores

EB Wilson Cluster
- 96 Cores, 2 GPUs

LittleFe
- 12 Cores, 6 GPUs

Key HTCondor Features
- Dynamic Slots
- Condor Connection Broker
- UID_DOMAIN
- Flocking
Future HPC Infrastructure

Blugold Commitment SuperComputer

- **$100,000 Hardware**
 - 100-200 CPUs
 - 2-4 GPUs

- **$20,000 Software**
 - Specialized compilers
 - Domain specific applications

Computational Science Working Group

- **Interdisciplinary collaboration**

- **Consolidate** management and administration

- **Promote** HPC research and teaching

General Purpose HPC cluster and a supportive computational science community.
HTCondor in Research

Image Transcoding

Diagram showing the process flow of image transcoding using HTCondor.
HTCondor in Research (Continued)

Distributed Photo Processing Pipeline (DP3)
HTCondor in Research (Continued)

Distributed System For Automated Blender Rendering (DSABR)
HTCondor in Teaching

- CS 252 Computer Systems
 MPI Scheduler

- CS 352 Computer Organization & Design
 Distributed Computing

- CS 485 Software Engineering
 Continuous Integration

- CS 491 Cloud Computing
 WorkQueue, MapReduce
Future HTCondor Projects

- HTML5 Cluster Visualization.
- RESTful Cluster Web Service.
- Cloud provisioning system.
- Curriculum modules for distributed computing.
Concluding Observations

- **HTCondor** enables *connecting* multiple distributed systems.

- **HTCondor** is a *low-level component* in distributed system stack.

- **HTCondor** is *powerful*, but also *complex*.

- **HTCondor** needs an easier *API* for third party extension.
Questions?

Email
Peter Bui (buipj@uwec.edu)

Website
http://cs.uwec.edu/~buipj

Acknowledgments
Office of Research and Sponsored Programs